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Outline

• Integrand reduction by algebraic geometry

• Maximal unitarity by algebraic geometry

• Examples: 2-loop 5-gluon planar QCD, 3-loop 4-point triple-
box ...
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Why high loops?
• Phenomenology: NNLO correction for theoretical prediction

• Theory：deep structure in gauge theories and gravity
Computation of two-loop Feynman diagrams is complicated.

Feynman rules, 
Integration-by-parts identities 

• two-loop massless QCD, 2→2 process
Anastasiou, Glover, Tejeda-Yeomans and Oleari (2000)

Bern, Dixon, Kosower (2002) Bern, De Freitas, Dixon (2002)

• two-loop, pp→H + 1 jet
Gehrmann, Jaquier, Glover and Koukoutsakis (2011)

•NNLO, e+ e-→3 jets
     Gehrmann and Glover (2008)

• NNLO, q qbar→t tbar
     Bernreuther, Czakon, Mitov (2012)

• NNLO, g g→H g
      Boughezal, Caola, Melnikov, Petriello, Schulze (2013)

and etc.

multi-loop integrand reduction... 

multi-loop maximal unitarity ... 

Unitarity 
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Unitarity at one-loop

•no pentagon, hexagon ...
•scalar integral (numerator is one.)
•c coefficients are independent of loop momenta

A(1) = +cbub·+ctri·c
box

·

D = 4� 2✏

D = 4

Also contains

cpenta·

no hexagon ...

+c[4]
box

· µ4
+ . . .

Unitarity:

Determine ‘c’ coefficients 
from on-shell cut solutions

and tree amplitudes 

quadruple cut ! c
box

triple cut ! ctri

double cut ! cbub

l = l[4] + l?, (l?)
2 ⌘ �µ2
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Integrand reduction: box
Integrand-level reduction, Ossola, Papadopoulos and Pittau (OPP), 2006
                                          Giele, Kunszt, Melnikov, 2008

A(1) =

Z
d4k

(2⇡)4
N(k)

D1D2D3D4

l2

l1l3

1

23

4

l4

3 reducible scalar products 

1 irreducible scalar product

N(k) = �1234(k) +
X

i1<i2<i3

�i1i2i3(k)
Y

i 6=i1,i2,i3

Di +
X

i1<i2

�i1i2(k)
Y

i 6=i1,i2

Di

= �1234(k) +O(D1, D2, D3, D4)

�1234(k) =
X

i

ci(k · !)i

RSP = {k · P1, k · P2, k · P3}

SP = {k · P1, k · P2, k · P3, k · !}
�1234(k) is a polynomial in scalar products (SP).

ISP = {k · !}

�1234(k) is a polynomial in ISP only.

2(k · P1) = D4 �D1 � P 2
1

2(k · P2) = D1 �D2 + P 2
2

2(k · P3) = D2 �D3 + 2P2 · P3 + P 2
3

! is auxiliary, (! · Pi) = 0, i = 1, 2, 3, 4
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Integrand basis for box
�1234(k) =

X

i

ci(k · !)i

l2

l1l3

1

23

4

l4

How many terms are there?

Renormalizability i = 0, 1, 2, 3, 4

Cut-equations for ISP 

Reducible i = 0, 1

�1234(k) = c0 + c1(k · !)integrand basis

k2 = D1

(Generalized-) Unitarity Cuts D1 = D2 = D3 = D4 = 0

l2

l1l3

1

23

4

l4

⊕ ⊖

4Y

i=1

Ai
tree(k

(1)) = N (1)

⊖ ⊕
l2

l1l3

1

23

4

l4

4Y

i=1

Ai
tree(k

(2)) = N (2)

⊖ ⊕

⊕ ⊖

Spurious term:

N(k)� c0 � c1(k · !) =
X

i1<i2<i3

�i1i2i3(k)
Y

i 6=i1,i2,i3

Di + . . .

Z
d4k

(2⇡)4
k · !

D1D2D3D4
= 0

(k · !)2 = t2/4 +O(D1, D2, D3, D4)

Wednesday, November 13, 13



One loop, other diagrams
Dimension Diagram # SP (ISP+RSP) #terms in integrand basis 

(non-spurious + spurious)
# Solutions 
(dimension)

4 4 (1+3) 2 (1+1) 2 (0)

4 4 (2+2) 7 (1+6) 1 (1)

4 4 (3+1) 9 (1+8) 1(2)

4-2ε 5 (2+3) 5 (3+2)  1(1)

•straightforward to obtain integrand basis, unitarity cut solutions 
•all one-loop master integrals are known
•c coefficients can be automatically computed by public codes 

• ‘NGluon’, Badger, Biedermann, and Uwer
• ‘CutTools’, Ossola, Papadopoulos, and Pittau
• ‘GoSam’, Cullen, Greiner, Heinrich, Luisoni, and Mastrolia
•  ...

Generalization to
higher loops? 
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Example: 4D massless two-loop hepta cut  

l2l3

l5 l6

l1
l4

l7

1

2
3

4

kq
7 cut-equations in  8 SP’s

4 cut-equations to identify 4 RSP’s

4 ISP’s

SP = {k · P1, k · P2, k · P4, k · !, q · P1, q · P2, q · P4, q · !}

ISP = {k · P4, k · !, q · P1, q · !}

3 cut-equations for ISP’s

(k · !)2 = (k · P4 � t/2)2 (1)

(q · !)2 = (q · P1 � t/2)2 (2)

(k · !)(q · !) = � t2

4
+

t(k · P4)

2
+

t(q · P1)

2
+

✓
1 +

2t

s

◆
(k · P4)(q · P1) (3)

Basis =?

Naive guessing: all renormalizable monomials which do NOT contain (k·!)2,
(q · !)2 or (k · !)(q · !).

P. Mastrolia, G. Ossola, 2011
S. Badger, H. Frellesvig, YZ, 2012
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Example: 4D massless two-loop hepta cut  

l2l3
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kq
7 cut-equations in  8 SP’s

4 cut-equations to identify 4 RSP’s

4 ISP’s

SP = {k · P1, k · P2, k · P4, k · !, q · P1, q · P2, q · P4, q · !}

ISP = {k · P4, k · !, q · P1, q · !}

3 cut-equations for ISP’s

(k · !)2 = (k · P4 � t/2)2 (1)

(q · !)2 = (q · P1 � t/2)2 (2)

(k · !)(q · !) = � t2

4
+

t(k · P4)

2
+

t(q · P1)

2
+

✓
1 +

2t

s

◆
(k · P4)(q · P1) (3)

Basis =?

Naive guessing: all renormalizable monomials which do NOT contain (k·!)2,
(q · !)2 or (k · !)(q · !).

56 terms? wrong...

P. Mastrolia, G. Ossola, 2011
S. Badger, H. Frellesvig, YZ, 2012
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Example: 4D massless two-loop hepta cut  
3 cut-equations for ISP’s, and their combinations

(k · !)2 = (k · P4 � t/2)2 (1)

(q · !)2 = (q · P1 � t/2)2 (2)

(k · !)(q · !) = � t2

4
+

t(k · P4)

2
+

t(q · P1)

2
+

✓
1 +

2t

s

◆
(k · P4)(q · P1) (3)

(1)⇥ (2)� (3)2

4(k · P4)
2(q · P1)

2 = �2s(k · P4)
2(q · P1)� 2s(k · P4)(q · P1)

2 � st(k · P4)(q · P1)

reduced

We have to “exhaust” all combinations...
Finally, we determine that the basis contains 32 terms

Solution S1, obtained by setting

α3 = −χ , β3 = z ,

α4 = 0 , β4 = 0 .

Solution S2, obtained by setting

α3 = z , β3 = −χ ,

α4 = 0 , β4 = 0 .

Solution S3, obtained by setting

α3 = 0 , β3 = 0 ,
α4 = −χ , β4 = z .

Solution S4, obtained by setting

α3 = 0 , β3 = 0 ,
α4 = z , β4 = −χ .

Solution S5, obtained by setting

α3 = 0 , β3 = −(χ+ 1) z+χ
z+χ+1 ,

α4 = z , β4 = 0 .

Solution S6, obtained by setting

α3 = z , β3 = 0 ,
α4 = 0 , β4 = −(χ+ 1) z+χ

z+χ+1 .

FIG. 4: The six solutions to the heptacut equations for the two-loop planar double box.
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6 families of hepta-cut solutions, Laurant series contains 38 terms
Solving 38 linear equations for 32 coefficients, done!

Messy, not automatic!

or

S. Badger, H. Frellesvig, YZ, 2012
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Gröbner basis and integrand basis

Synthetic polynomial division

In most cases, it does not work since it stops too early, 
unless we are using Gröbner basis. Gröbner basis

‘good’ generators 

arXiv:1205.5707,  YZ
arXiv:1205.7087,  Mastrolia, Mirabella, Ossola and Peraro 

I = hD1, . . . , Dki = hg1, . . . , gmi

N = q1g1 + . . . qkgk + r

�
dbox

= r

N divided by {D
1

, . . . Dk}:
Define a monomial order, and recursively preform N/D

1

, . . . , N/Dk. Finally,

the division process will stop and we have

N = f
1

D
1

+ . . . fkDk + r0

where r0 is the remainder. �

dbox

= r0 ???

Toy Model: N = xy

3
, I = hx3�2xy, x

2
y�2y

2
+xi. Direct synthetic division

of N towards {x3 � 2xy, x

2
y � 2y

2
+ x} gives r

0
= xy

3
.

But the Gröbner basis is I = hy3, x� 2y

2i, and the synthetic division of N

on Gröbner basis gives r = 0. So N 2 I.

Z
d4k

(2⇡)4

Z
d4q

(2⇡)4
N

D
1

D
2

. . . D
7

, N = Q+�
dbox

, Q 2 I

�
y

3
x� 2y2

�
=

�
x

3 � 2xy x

2
y � 2y2 + x

�✓� 1
4 � 1

4xy �
1
2y

3
y

2

1
4x

2 � 1
2y +

1
2xy

2 1� xy

◆

Wednesday, November 13, 13



Grobner basis: dbox example 
arXiv:1205.5707,  YZ
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l5 l6

l1
l4

l7

1

2
3

4

4 ISP’s ISP = {k · P4, k · !, q · P1, q · !}kq

N = q
1

g
1

+ . . . qkgk +�
dbox

N contains 160 terms where �

dbox

contains 32 terms.

Gröbner basis contains the Gram-matrix relation 

4(k · P4)
2(q · P1)

2 + 2s(k · P4)
2(q · P1) + 2s(k · P4)(q · P1)

2 + st(k · P4)(q · P1) 2 G(I)

In principle, it works for arbitrary number of loops, any dimension
Automated by the public code: ‘BasisDet’

http://www.nbi.dk/~zhang/BasisDet.html,    YZ 2012

Dimension
propagators,
kinematics

Integrand 
basis

Can also find ISP 
automatically!
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Primary decomposition
arXiv:1205.5707,  YZ

Find the number of  branches of unitarity solutions 

•AG software ‘Macaulay 2’
•Numeric Algebraic geometry methods

4D massless dbox hepta-cut: I = I1 \ I2 \ I3 \ I4 \ I5 \ I6

I = hx2�y

2
, x

3+y

3�z

2i. How many (irreducible) curves are there in Z(I).
Primary decomposition:

I = I1

\
I2 I1 = hx+ y, z

2i, I2 = hx� y, 2y3 � z

2i

6 families of solutions

dictionary 
Algebra Geometry
height I dimZ(I) = n� height I

arithmetic genus (geometric) genus

4D massless dbox hepta-cut:  each family is one-dimensional with genus 0 (Riemann sphere)

(# free parameters)

(topology)

works for arbitrary number of loops, any dimension
High genus examples: arXiv:1302.1203,  Rijun and YZ 
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More examples

Dimension Diagram # SP (ISP+RSP) #terms in integrand basis 
(non-spurious + spurious)

# Solutions 
(dimension)

4 8 (4+4) 32 (16+16) 6 (1)

4 8 (5+3) 69 (18+51) 4 (2)

4 4 (3+1) 42 (12+30) 1(5)

4 8 (3+5) 20 (10+10)  2 (2)

1

2 3

4
k q

1

2 3

4
k q

4-2ε 11 (7+4) 160 (84+76)  1(4)

3

4 1

2

l3

l4

l5

l6

l7

l2

l1

3

l4

4

12

l3

l5

l6

l2 l1

l7

4 8 (4+4) 38 (19+19)  8 (1)

4 12 (7+5) 398 (199+199)  14 (2)
1

2
3

4
l1 l2l3

Three-loop! Even more examples:
arXiv:1209.3747 Bo Feng and Rijun Huang

Non-planar

Nontrivial 
dimension
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Triple box results
arXiv:1207.2976, Simon Badger, Hjalte Frellesvig and YZ

1

2
3

4
l1 l2l3

fit 398 `c` coefficients from products of 8 trees, 

from 14 family of cut-solutions 
Yang-Mills with nf adjoint fermions and ns adjoint scalars

N nf ns

0 0 0
1 1 0
2 2 1
4 4 3

Integration-by-parts (IBP) identities 
398 terms → 3 master integrals

C�+�+
1 (s, t) =

� 1 + (4� nf )
st

u2
� 2(1 + ns � nf )

s2t2

u4

+
�
2(1� 2ns) + nf

�
(4� nf )

s2t(2t� s)

4u4

�
�
nf (3� ns)

2 � 2(4� nf )
2
�st(t2 � 4st+ s2)

8u4

C�+�+
2 (s, t) =

� (4� nf )
s

u2
+ 2(1 + ns � nf )

s2t

u4

�
�
2(1� 2ns) + nf

�
(4� nf )

s2(2t� s)

u4

+
�
nf (3� ns)

2 � 2(4� nf )
2
�s(t2 � 4st+ s2)

2u4

C�+�+
3 (s, t) =

+
�
2(1� 2ns) + nf

�
(4� nf )

3s2(2t� s)

2u4

�
�
nf (3� ns)

2 � 2(4� nf )
2
�3s(t2 � 4st+ s2)

4u4

New analytic results for non-supersymmetric gauge theory

C
1

I
tribox

[1] + C
2

I
tribox

[l
1

· p
4

] + C
3

I
tribox

[l
3

· p
4

]
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D-dim integrand reduction

D=4-2ε  ＋

＋

＋

＋

＋
µ33 = µ11 + µ22 + µ12

arXiv: 1310.1051: Simon Badger, Hjalte Frellesvig and YZ2-loop 5-point QCD

•Feynman rules + cut solution
•6D spinor helicity formalism

µ11 = l2[�2✏],1, µ22 = l2[�2✏],2 and µ12 = 2(l[�2✏],1 · l[�2✏],2)

�431(1+, 2+, 3+, 4+, 5+) =
i s12s23s45F1(Ds,µ11,µ22,µ12)

h12ih23ih34ih45ih51i (tr+(1345)(k1 + p5)2 + s15s34s45)

F1(Ds, µ11, µ22, µ12) = (Ds � 2)(µ11µ22 + µ11µ33 + µ22µ33) + 4(µ2
12 � 4µ11µ22)

k1
k2
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2-loop 5-gluon amplitude

subtraction 

Integrand reduction
� 1

(k1 + k2)2
�431xx

x x
x

x

x
�430

arXiv: 1310.1051

all coefficients are analytically found
IR structure: consistent with Catani’s factorization

first result on 2-loop 5-gluon 
helicity amplitude in QCD

non-planar part: under progress,
same methods
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Momentum-twistor parametrization
Analytic computation 

Spinor helicity formalism Momentum-twistor parametrization 

•momentum conservation
•Schouten identity
•Fierz identity
•...

all constraints resolved

(�, �̃)

5-point

 
In the final result, it is easy to convert {x1, x2, x3, x4, x5} to sij , tr5...

n-point, under progress

Andrew Hodges

�̃i =
hi, i+ 1iµi�1 + hi+ 1, i� 1iµi + hi� 1, iiµi+1

hi, i+ 1ihi� 1, ii

(�, µ)

✓
�1 �2 �3 �4 �5

µ1 µ2 µ3 µ4 µ5

◆
=

0

BB@

1 0 1
x1

1
x1

+ 1
x2

1
x1

+ 1
x2

+ 1
x3

0 1 1 1 1
0 0 0 x4 1
0 0 1 1 x5

x4

1

CCA
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Maximal unitarity method

A =

X

i

CiIi +Rational terms

master integrals

extract coefficients by contour integrals

x

x

x

x

A =

Z
dDk1
(2⇡)D

. . .
dDkL
(2⇡)D

N

D1 . . . Dn
Ci =

I

�i

dDk1
(2⇡)D

. . .
dDkL
(2⇡)D

N

D1 . . . Dn

�i

multidimensional contours

locus of poles

Ruth Britto
Freddy Cachazo

Bo Feng
David Kosower
Kasper Larsen

....

D1 = . . . = Dn = 0

and from Jacobian
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multivariate residues
(z1, z2)

P

ResP (
hdz1 ^ dz2

f1f2
) ⌘ 1

(2⇡i)2

I

|f1|=✏

I

|f2|=✏

hdz1 ^ dz2
f1f2

Trivial! if f1(z1, z2) = f1(z1), f2(z1, z2) = f2(z2)..., it is reduced to univari-

ate residues.

one-loop diagrams, two-loop double box...

multivariate residues
(z1, z2)

f1(z1, z2) = 0

f2(z1, z2) = 0

P

(z1, z2)

f1(z1, z2) = 0

f2(z1, z2) = 0

P

Non-degenerate, if J = det

✓
@fi
@zj

◆

P

6= 0, then

ResP (
hdz1 ^ dz2

f1f2
) =

h(P )

J(P )

Degenerate, if J = det

✓
@fi
@zj

◆

P

= 0.

For example, {f1, f2} = {z1, z21 � z22} and h = z2

??

1

2
3

4
l1 l2l3
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algebraic geometry approach
Transformation law

(z1, z2)

f1(z1, z2) = 0

f2(z1, z2) = 0

P

(z1, z2)

P

g2(z2) = 0

g1(z1) = 0

✓
z1
z22

◆
=

✓
1 0
z1 �1

◆✓
z1

z21 � z22

◆
. All multivariate residues 

can be calculated in this way

I = hf1, . . . , fni be the zero-dimensional ideal and J = hg1, . . . , gni be a

zero-dimensional ideal such that J ⇢ I. So gi = aijfj , where the aij ’s are

polynomials. Let A be the matrix of aij ’s,

Res{f1,...,fn},⇠

✓
h(z)dz1 ^ · · · ^ dzn

f1(z) · · · fn(z)

◆
= Res{g1,...,gn},⇠

✓
h(z)dz1 ^ · · · ^ dzn

g1(z) · · · gn(z)
detA

◆
.
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triple box example

1

2
3

4
l1 l2l3

• 14 branches
• 64 residues
• 23 independent residues

arXiv:1310.6006, Mads Sogaard and YZ

using Integration-by-parts relations to find weights of contours...

C
1

I
tribox

[1] + C
2

I
tribox

[l
1

· p
4

] + C
3

I
tribox

[l
3

· p
4

]

degenerate residues exist

consistent with the result from integrand reduction...
generalize to n-loop, any diagram

⌦1 =
1

8
�3s1012{�1, 0,�2, 0, 1, 1, 0, 0, 1,�1,�1, 0, 1, 0, 1, 0, 2, 0,�1, 1,�1,�1, 0} ,

⌦2 =
1

4
�2s912{0, 1, 2,�1,�2,�1, 0,�1,�1, 1, 0, 0,�1, 1, 0,�1,�2, 1, 2,�1, 1, 0, 0} ,

⌦3 =
1

4
�2s912{1,�1,�2, 3, 3, 0,�2, 1, 0, 0, 1, 2, 0,�1,�1, 1, 2,�3,�3, 0, 0, 1, 0} .
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Conclusion

• Algebraic geometry approach to high-loop amplitudes b

• Gröbner Basis → Integrand basis

• Primary decomposition → Global unitarity cut structure

• Multivariate residues → maximal cut method

• First steps towards automating high-loop amplitudes

• Promising for NNLO 2 →3, 4 processes
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